
International Journal of Engineering Science Invention

ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726

www.ijesi.org Volume 2 Issue 5 ǁ May. 2013 ǁ PP.64-69

www.ijesi.org 64 | P a g e

Adaptation Mechanism for Managing Grid Resources

1.
 Dr D. R. Aremu

2.
Faki A.Silas

1,2
University of Ilorin, Ilorin, Faculty of Communication and Information Sciences,

Department of Computer Science.

ABSTRACT: As Grid architecture provides resources that fluctuates, application that should be run in this

environment must be able to take into account the changes that may occur. This application must adapt to the

changes in Grid environment. Checkpointing is one way to make applications responds to these changes.

Though, this can not be done without incurring checkpoint overheads. To reduce these checkpoint overheads

and make application run optimally, checkpoint interval and total time to release an executing job in resources

must be taken in to consideration. This can be efficiently achieved by use of exception handling. Exception

handling, though has its roots in programming language design, can be used to handle fault in a grid

environment. The combination of exception handling model with checkpoint parameters can perform optimally

in reduction faults in grid resources.

Keyword: Checkpoint, Exception Handler, Grid, Commuting Resources, Fault Tolerance.

I. INTRODUCTION
 Grid computing arose in the 1990’s, in the supercomputing community with the goal of making

underutilized computing resources easily available for complex computation across geography distributed sites.

The main goal of grid is not to buy new resources but to borrow the power of computational resources from

where they are not in use. Management of grid resources is increasingly becoming very complex due to

resources that are geographically located, heterogeneous in nature, own by different individuals or organizations

with their different policies, access and cost models, have dynamically varying loads and availability. As a

result, the chances of failure is on the increase. As a matter of fact, in the grid systems, resource failure is the

rule rather than exception. Resources could be turned off or simply given to another user for other reasons. Also

bandwidth or service time of some computing resources could be extremely low. In the midst of all these

challenges, grid applications are expected to accomplish their task as if there are no complexities. To counter the

problem of volatility in the grid environment, system designers have come up with various methods such as

Checkpoint/Restart, Replication, Retry, Message logging etc. Checkpoint/Restart is an interesting fault tolerance

management method wherein the snapshot of the program execution is taken at regular intervals and saved in a

stable storage. When a node failure happens, the stored snapshot (or process image) is used to restore the failed

process either on the same node or elsewhere. Replication is another interesting fault tolerance mechanism

which relies on multiple replicas of the same process running on multiple nodes. The idea of fault tolerance is

simple: if one of the nodes fails, the replica node(s) will continue the execution and thus make the system robust

up to some level. With the advantages of fault tolerance management, comes a disadvantage in the form of

overhead. The fault tolerance overhead is the amount of time an application spends in enforcing fault tolerance

policies. Every time a checkpoint-enabled application takes a snapshot of its process image, it incurs an

overhead that is unavoidable. So, when implementing fault tolerance, the inevitability of incurring the overhead

has to be kept in mind. To minimize the amount of overhead in checkpointing, this paper presented a checkpoint

interval model that is simple and has minimal overhead and a recovery process that is fast and efficient using

exception handlings. The rest part of the paper is organized as follows: Section 2 discussed the related work,

while section 3 presented fault tolerance management designs using Checkpoint Interval model. In section 4 the

simulation results of the checkpoint interval model was discussed, while sections 5 concluded the paper, and

section 6 presented future work.

II. RELATED WORK
 Interest in adaptive computing systems has increased dramatically in the recent past few years, and a

variety of techniques now allows software to adapt dynamically to its environment. According to Jaqualine

(2006), dynamic adaptation and reconfiguration of software date back as earliest days of computing, when self-

modifying code supported runtime program optimization and explicit management of physical memory.

According to Jaqualine (2006), there are three general approaches to implement modeling and designing

mechanism for dynamic adaptation. These are: Parameter adaptation. Parameter adaptation modifies

programmed variables that determine behavior. The internet Transmission Control Protocols (TCP) is an often-

Adaptation Mechanism For Managing Grid Resources

www.ijesi.org 65 | P a g e

cited example. TCP adjust its behavior by changing values that control window management and retransmission

in response to apparent network congestion. The weakness of this approach is that it does not allow new

algorithms and components to be added to an application after the original design and construction has been

done. It can tune parameters or direct an application to use a different existing strategy but it cannot adapt new

strategies. However, it offers the advantage that the adaptation can be performed with good performance.

Code (agent or component) migration. Code migration can be defined as the capability of a distributed

application to relocate its component at runtime. In Lang and Mitsuru (1998), this is referred to as logical

mobility of the user service as in mobile computing. In general, component migration may involve the code of a

software component (e.g. the code of a class) or even some combination of code and state, often referred to as a

mobile agent. Compositional Adaptation. Compositional adaptation result in the exchange of algorithmic or

structural part of the system, in order to improve a program’s fitness to its current environment.

By contrast, compositional adaptation exchange algorithms or structural system components with

others that improve a program’s fit to its current environment. With compositional adaptation, an application

can adapt new algorithms for addressing concerns that were unforeseen during development. This approach has

a larger adaptation scope than the parameter adaptation, as it does not only enable simple code tuning

programmed during design time but also cope with adaptation types unforeseen during the original design and

construction.

A dynamic adaptation considers that it should occur in order to maximize the equation between the

application and its execution environment (Jeremy, Francoise & Jean, 2005). This means that the purpose of

dynamic adaptation is to optimize the application whenever its execution environment changes. Furthermore,

application can adapt itself anywhere in the execution part. It can be either in the past state or at a state in the

future.

II.1. Fault Tolerance: Fault tolerance is a survival attribute of a computer system. Paul and Jie (2003)

stated that, the function of fault tolerance is to “….To preserve the delivery of expected service despite the

presence of fault caused errors within the system itself. Errors are detected and corrected, permanent fault are

located and removed while the system continue to deliver accepted service “

 Fault tolerance is the ability of an application to operate in the presence of software and hardware failures, i.e.

processors and network crashes. A large number of research effort has already been develop on fault tolerance.

Various aspects that has been explore include design and implementation of fault detective services as well as

the development of failure prediction and recovery strategy. Though, both methods seem to improve system

performance in the presence of failures, their effectiveness largely depends on tuning runtime parameters such

as the checkpoint interval and number of replicas. The work on grid fault tolerance can be divided into pro-

active and post-active (Antony, Theresa, Sumathi & Antony, 2010). In proactive mechanism, the failure

consideration for the grid is made before the scheduling of the job, and dispatched with hope that the job does

not fail. Whereas post-active mechanism handles the job failure after it has occurred. Of those that look into this

issue, most works are post-active in nature and deal with failure through grid monitoring (Medeiros, Cirne,

Brasilairo & Sauve, 2003).

II.2. Fault Tolerance Techniques: Some of the important approaches for implementing fault tolerance in

distributed applications are discussed below.

Ii.3. Check Pointing: According to Tanenbaun and Van (2002), the most popular fault-tolerance

mechanism is check pointing which means the periodical saving of the state of the application on stable storage,

a device that can survive failures (usually one or more hard disks). The information stored on the stable storage

is called a checkpoint. After a crash, the application is restarted from the last checkpoint rather than from the

beginning. Elnozahy, Alvisi, Wang and Johnson (2002) stated that, Checkpointing comes in three varieties:

uncoordinated, coordinated and communication induced checkpointing.

The main advantage of checkpointing is that it is very general technique which can be applied to any type of

parallel applications. Though it has disadvantages that it causes execution time overheads, even when there are

no crashes (This can be reduced by incremental checkpointing). The overhead is dependent on the frequency at

which checkpoints are taken and this depends on the programmer.

II.4. Parameter affecting the Performance of Checkpoint System.

a. The various factors that affect the performance of checkpoint are as follows,Checkpoint Interval:

Determine the efficiency of the checkpoint system.

b. The checkpoint interval has to be optimal to achieve high performance.

c. Time to checkpoint: determine the bulk of the overhead incurred in checkpointing. We get better

performance as the checkpointing overheads reduces.

d. Time to restart: determine the overhead incurred in restarting an application process on Another node

when failure happens. This too is responsible for degradation of performance as its value increase.

Adaptation Mechanism For Managing Grid Resources

www.ijesi.org 66 | P a g e

II.5. Message Logging
 An alternative fault-tolerance technique is message logging. During failure free operations, each

process logs sent or received messages (depending on the variant of messages logging algorithms) from other

processes (Elnozahy et al, 2002). After a failure, the crashed process is re-executed and the logged messages

are replayed. Message logging is typically combined with checkpointing to reduce the amount of re-execution

needed. Message logging enables the system to recover beyond last checkpoint. Also, message logging is used

to provide the application ability to interact with the outside world. Though, it is used less often than

checkpointing.

 According to Bouteiller, Lemarinier, Krawezik and Capello (2003), Message logging schemes comes

in three flavors: pessimistic message logging, optimistic message logging and casual message logging.

Message logging is very general technique but it can cause high execution time overhead. It also affects

communication throughput and latency.

II.6. Replication
 In replication, multiple copies of the same task/process are run on separate processors. If one of the

copies crashes, other copies are used. This technique can be used not only for tolerating crashes failure but also

Byzantine failures. The technique is suitable for system of which high availability is required since the recovery

is fast. Replication is often used in hardware-based fault tolerance.

II.7 Retry: Another technique used for preventing fault tolerance is retry: re-computing parts of the work

that were lost in a crash. This technique is good for applications that adhere to functional programming

paradigm. A functional programming application consists of functions with no side effects. There is no notion

of a global state and a result of a function depends solely on its input parameter. Example of such that uses

functional programming is master-worker application.

II.8 Exception Handling: According to Brian (2006), exception handling has its roots in Programming

Language Design but can be viewed in more general terms. It is of course, at best just another divide and

conquers method for coping with complexities. It is a well design language construct that enables Programmers

to simplify their task by identifying and dealing separately with various predictable but uncommon situations

during complexities and errors. Each such situation, perhaps is describe by a set of logical preconditions, can

have it own separate exception handler associated with it, design to deal with just this precondition, and if

possible to achieve a post condition in focus.

In summary, exception handling technique though by no means is a panacea, can be a powerful aid to

structuring and hence simplifying very complex situations and the design of systems that have to cope with

faulty situations.

III. FAULT TOLERANCE MANAGEMENT DESIGNS
This section presented three designs for fault tolerance management. These designs are: checkpoint interval

design, exception handler algorithm, and fault index update algorithm.

Exception Handler As William Shakespeare say and I quote “if they’re running and they don’t look where

they’re going I have to come out from somewhere and catch them”. It is necessary to catch them before they go

out of hand and this is the function of exception handler. If an exception (fault) occurs as a result of a statement

in a try block which may be due to, computing resource being switch off, low bandwidth, service time of

resource being reduces due to hardware problem etc, the try block terminates immediately. Next the program

searchers for the first catch handler that can process the type of fault that occurred.

It the try block completes its execution successfully (i.e. no fault in job execution), the program ignores the

catch handlers and program control continues after the first statement after the catch block.

Exception handler Algorithm
N: number of checkpoint to be made in a job

n: number of checkpoint already made

While (N! = 0)

 {try { 1. is job computing in the resource} catch { 1a. resent job to the scheduler at the nth checkpoint

1b. notify the user that his job has been rescheduled to resource i}N -= 1}

III.1 Fault Index Manager: Fault index manager maintains the fault index value of each resource which

indicates the failure rate of the resources. The fault index of a grid resource is increment every time the resource

does not complete the assigned job within the deadline and also on resource failure. The fault index manager

updates the fault index of a grid resources using index update algorithm.

Adaptation Mechanism For Managing Grid Resources

www.ijesi.org 67 | P a g e

III.2 Fault Index Update Algorithm

a. IF checkpoint manager receives the job completion result from resources THEN

1. IF resources fault index >= 1 THEN

2. Send a massage to fault index manager to decrement the fault index of resource that completes the

assigned job.

3. Send details of the finished job to the schedulerEND IF

b. GOTO step 3

c. END IF

d. IF checkpoint manager receives the job failure message from resources THEN

e. Send message to fault index manager to increment the fault index of resources that has fails to

complete the assigned job.

f. Send a message to checkpoint server, whether there is any checkpoint result of this job.

g. IF checkpoint result of the job exist in the checkpoint server THEN Submit the remaining part of job

after last checkpoint received to the scheduler for rescheduling GOTO step 3 END IF

h. IF checkpoint result of the job does not exist in the checkpoint server THEN Submit the job from start

to the scheduler for rescheduling. GOTO step 3 END IF END IF

III.3 EXIT: Checkpoint Interval Designed Model

Checkpoint Setter Algorithm

Input: Fault Index of a resource

F: Fault Index of the selected grid resources

 F(i), i= 0,2, . . . , N, are integers such that F(0) < F(1) . . . < F(N)

1. IF (F == F(1)) THEN

(i) The job is queue to that resources with a checkpoint interval 1

(ii) GOTO step 6.

2. IF (F ==F(2)) THEN

(i) The job is queue to that resources with a checkpoint interval 2

(ii) GOTO step 6.

3. IF (F == F(3)) THEN

(i) The job is queue to that resources with a checkpoint interval 3

(ii) GOTO step 6.

4. IF (F == F(N)) THEN

(i) Then the job is queue to that resources with a checkpoint interval N

(ii) GOTO step 6.

5. IF (F > F(N)) THEN

(i) Remove resources from available resources and label it as unavailable resources i.e. no job is assigned

to that resources

(ii) Add the job to the unassigned job list and reschedule it.

6. EXIT

3.1 Experimental Design For Evaluating Checkpoint Interval

The duration of time interval checkpoints are to be set as the job progress depends on the user.

The models below determine the number of checkpoint to be set base on the fault index of a resource.

JendT = JstartT + (n - 1) Ci . . . Model I

JendT = JstartT*Ci
(n - 1)

 . . . Model II

Where JendT is the end time of execution of job j,

 JstartT is the start time of execution of job j,

 n is the number of checkpoint of job j with the execution time,

 Ci is the checkpoint interval at which checkpoint is to be set.

Checkpoints are determining based on the fault index of a resource, the higher the fault index, the closer

checkpoint interval is set on the resources.

The models set checkpoint in an arithmetic or geometric manner. Though in data intensive applications,

the checkpoint file might become huge. If the amount of space on stable storage is limited, it is necessary to

prevent the checkpoint file from growing too much by implementing checkpoint file compression.

Adaptation Mechanism For Managing Grid Resources

www.ijesi.org 68 | P a g e

IV. SIMULATION RESULT
 There are three basic methods that can be use to get information on real world Systems:

Experimentation, Analysis and Simulation.

 Experiment seem to be more accurate but sometimes it is costly, time consuming and sometimes

dangerous. Analysis is typically base on heavy assumptions (mostly mathematically) that are rarely true in

practical real life situations. Simulation sometimes is the only way out because it can represent a real world with

few assumptions, less cost and easily modifiable.

 The presented strategy is evaluated using simulation.

Experiment 1 Determination of effects of checkpoint interval using our model.

A job is considered with start and end time. Checkpoint taking at fixed interval.

The graph below is drawn using model I and II with the job start time at one minute, checkpoint interval of two

seconds; seven checkpoints were considered before the job elapse. This implies that the job takes 13 seconds to

complete using model I and 64 seconds to complete using model II.

Graph 1. Graph of checkpoint interval vs. time of execution.

 Graph 1 shows the performance of checkpoint interval as execution time progresses using the presented

models. It can be observes that both models exhibit close related behavior up to the fourth checkpoint interval,

the execution time and the number of checkpoint made is almost the same. After which model II made a sharp

increase in time of execution. Though, the numbers of checkpoints made are the same, the time used in

execution of the job is not the same. Model II execution time is more than model I. This implies that Model I

will make more checkpoint than model II thereby incurring more checkpoint overhead. In terms of recovery,

model II will do more recomputing of failed job because the checkpoints are far apart in the terms of time.

Conclusively, model I is more suitable for computing resources that have high fault index because of its

checkpoint interval are close.

V. CONCLUSION
 Fault tolerance using checkpointing is very popular but has its own price tag, checkpoint overhead. To

minimize the checkpoint overhead, we carefully evaluated the checkpoint interval using two models (model I

and Model II).

 Model I as stated in earlier is arithmetic in nature. The checkpoint interval increase at arithmetic

sequence in relation with time of job execution of the computing resource. The checkpoint interval here is small

in nature which means the system will spend some useful time checkpointing and thus incur a high checkpoint

overhead. This model is applicable to resources with high fault index from the fault index manager.

 Model II checkpoint interval increase geometrical with time of execution of the computing resource.

This model make little checkpoint intervals over time thereby recording a little checkpoint overhead. Though it

has a disadvantage of executing a large portion of code over and over again when failure occurs. This model is

most suitable for a resource with low fault index.

Conclusively, we said the fault index determine the model to be implemented.

VI. FUTURE WORK
 This work is done purely with simulation. In the future, it is planned to explore the potentials of these

algorithms by embedding them in a real world grid computing environments.

0

20

40

60

80

1 2 3 4 5 6 7

Ex
ec

u
ti

o
n

 T
im

e
in

Se

co
n

d
s

Number of Checkpoints

Number of checkpoint interval vs Execution Time

Model I

Model II

Adaptation Mechanism For Managing Grid Resources

www.ijesi.org 69 | P a g e

REFERENCES
[1]. Antony, L. Theresa, A. Sumathi, G & Antony, D. S. (2010), Dynamic Adaptation of Checkpoints and Rescheduling in Grid

Computing, International journal of Computer Application (0975-8887) Vol. 2-No. 3.

[2]. Bouteiller, A. Lemarinier, P. Krawezik, K & Capello, F. (2003),“Coordinated checkpoint versus message log for fault tolerant

MPI,”Proceedings of IEEE International Conference on Cluster Computing, pp.242 250.
[3]. Brain, R. (2006), University of Newcastle upon Tyne, June.

[4]. Elnozahy E. A. Alvisi, L. Wang, Y.M. & Johnson, D.B. (2002), A survey of Roll-Back recovery Protocols in massage -passing

System, ACM Computing Survey, September.
[5]. Foster, I. (2002) What is Grid? A Three Point Checklist, Argonne National Laboratory and University of Chicago, 20 July.

[6]. Jaqualine, F. (2006), Mobility and Adaptation Enabling Middleware (Madam) SINTEF, D2.2, December.

[7]. Jeremy, B. Francoise, A. & Jean, L. P. (2005), Dynamic Adaptation for Grid Computing, IRISA/INSA de Rennes, Rennes
France, IRISA/Universite de France.

[8]. Lang,D.B & Mitsuru, O. (1998), Programming and deploying mobile Java agent with aglet, Addison Wesley Longman

Publishing Company ISBN 0201325629.
[9]. Medeiros, R. Cirne, F. Brasilairo, F & Sauve, J. (2003), Fault in grid: Why are they so Bad and What can Be Done about It. In

proceeding of the Fourth International Workshop on grid Computing, (Grid’03).

[10]. Paul, T. Jie, X. (2003), Fault Tolerance within a Grid Environment, University of Durham DHI 3LE, United Kingdom
[11]. Tanenbaun, A.S. & Van Steen, M. (2002), Distributed Systems, Principles and Paradigms, Prentice Hall.

